- g *
' /AD-A079 716 WISCONSIN UNIV~MADISON MATHEMATICS RESEARCH CENTER F/6 9/2 N
AN ADAPTIVE NONLINEAR LEAST=SQUARES ALGORITHM, (U)
OCT 79 J E DENNISs D M GAY» R E WELSCH DAAG29=75=C=0024

UNCLASSIFIED MRC=TSR-2010 NL

END
2 -80 |8

.

DATE
FILMED

mll =
TR

22 it nie

r
fe

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

; 1
0 = »
¢ MRC]Techm.cal ryfp.t {2010
ADAPTIVE NONLINEAR LEAST -SQUARES
l\t ALGSRITHM = :
/_
) \
+ Mathematics Research Center
University of Wisconsin—Madison
' 610 Walnut Street
Madison, Wisconsin 53706
(&)
|
i
| = e c—ppad WSF-meS Db~ 32
T Y — PP 4 ~MC2 /0~ PF<7 |
475) DARC 27 Gl < e
g Approved for public release
Distribution unlimited
sponsored by
U. S. Army Research Office National Science Foundation National Bureau of
p.0. Box 12211 washington, D. C. 20350 Economic Research
pesearch Triangle Park Washington, D. C. 20230

North Carolina 27709 E
dd 20U
A 4 ‘:f

M

UNIVERSITY OF WISCONSIN - MADIS
MATHEMATICS RESEARCH CENTER

AN ADAPTIVE NONLINEAR LEAST-SQUARES ALGORITHM

-

: i J g i
John E. Dennis, Jr., David M. Gay? Roy E. Welsch®

Technical Summary Report #2010
October 1979 ,4/
S—

ABSTRACT

:'NLstL is a modular program for solving nonlinear least-squares problems
that incorporates a number of novel features. It maintains a secant approxi-
mation S to the second-order part of the least-squares Hessian and adaptively
decides when to use this approximation. S 1is "sized" before updating, some-
thing which is similar to Oren-Luenberger scaling. The step choice algorithn
is based on minimizing a local quadratic model of the sum of squares function /
constrained to an elliptical trust region centered at the current approximate
minimizer., This is accomplished using ideas discussed by Moré, together with
a special module for assessing the quality of the step thus computed. These
and other ideas behind NL2SOL are discussed and its evolution and current im-

plementation are also described briefly.‘;

AMS (MOS) Subject Classification: 62-04, 65K05, 90C30

Key Words: Unconstrained optimization, nonlinear least squares
nonlinear regression, quasi-Newton methods, secant methods.

Work Unit No, 7 - Numerical Analysis

+Rice University, Houston, Texas 77001

iMassacﬁusetts Institute of Technology, Cambridge, Massachusetts 02138

This work was supported in part by National Science Foundation Grants DCR75-10143,
AUCcSHe—-00324, and SOC76-14311 to the National Bureau of Economic Research, Inc., and
was sponsored in part by the United States Army under Contract No. DAAG29-75-C-0024.
This material is based upon work supported by the National Science Foundation under
Grant No. MCS78-09525.

This cacusent ias bess approved
ior public ralcowe amd sale; iw
[distsil tem i3 vr Voited,

SIGNIFICANCE AND EXPLANATION

Mathematical models are frequently used in the physical and social sciences.
Such models usually contain parameters that may be chosen to make the model "fit"
some given data as well as possible in some specified sense. One sense often
specified is that of minimizing the sum of the squares of the errors that the
model makes on the given data, and when some of the parameters appear nonlinearly
in the model, determining the model parameters requires solving a nonlinear least-
squares problem. In various contexts, such as when the data contain large measure-
ment or transcription errors, one may wish to solve a nonlinear least squares
problem in which the model errors at the optimal parameters are large enough that
conventional nonlinear least-squares algorithms, such as the Gauss-Newton or
Levanberg-Marquardt methods, perform poorly. The present work describes an
approach that usually gives good performance whether or not the model errors are
large. 1In part this paper describes the computer (->de NL2SOL, which implements
the ideas presented here. !NL2SOL also embodies many of the ideas presented by
John Dennis and Robexrt Schnahel in the short course that they gave in May, 1979
at the University of "isconsin-Madison under sponsorship of the Mathematics

Research Center.

The responsibility for the wording and views expressed in this cescriptive summary
lies with MPC, and not with the authors of this report.

T . ax —— R

o1 et i 2 ARSI DY

AN ADAPTIVE NONLINEAR LEAST-SQUARES ALGORITHM

by

J.E. Dennis, Jr., David M. Gay, Roy E. Welsch

1; Introduction.

This project begen in order to meet a need for a nonlinear least-squares
algorithn which, in the large residual case, would be pore reliable than the
Gauss-Newton or Levenberg-larquardt method [Dennis, 1977) and more efficient

. than the secant or variable metric algorithus [Dennis & Moré, 1977].s?ch as

the Davidon-Fletcher-Powell method, which are intended for general funciion

minimization.
We have developed a satisfactory computer program called NI2SOL bdased

. on ideas of Dennis and Welsch [1978] and our primary purpose here is to report

the details end to give some test results. On the other hand, we learned so
guch during the develorment which seems likely to be epplicabdble in the
development of other algorithms that we have chosen to expend our exposition
to include sore of this experience.

In section 2 we set out the prodlem and the notation we intend to use.
Section 3 deals with our way of supplementing the classical.causs-ﬂewton
approximation to the least-squares Hessian by various analogs of the Davidon-
Fletcher-Powell methed. Section U dbriefly descrides our interpretaticn of
the Oren-Luenturger [Oren, 1973] sizing strategy for this augmentation. 1In

8- :tion 5 we descride our adeptive quadratic modeling of the objective function.

i ; Section 6 contains a discussion of the stopping criteria end covariance matrices
| and section T contains test results. The NL2SOL Usage Surmary is included es
’

an eppendix. ‘
This work was supported in part by the National Science Foundation Grants DCR75-10143,

E P MCS76-00324, and SOC76-14311 to the National Bureau of Economic Research, Inc., and
i was sponsored in part by the United States Army under Contract No. DAAG29-~75-C=0024,
. }_ This work is based upon work supported by the National Science Foundation under

: ‘5 Grant No. MCS78=09525,

I

— B Gl ” v 1

-2~

2. The Nonlinear lLeest-Squares Problenm.

There are good reasons for numerical analysts to study least-squares

prodlers. In the first place, they are & computetion of primary importance in
statistical data analysis end hence in the social sciences, as well as in

the more traditional areas within the physical sciences. Thus & computer

algorithm eble to deel efficiently with both sorts of data is widely
applicabdle.
Although epplicability should always constitute sufficient Justification
to tackle a prodlem, in this cese there is also an opportunity for more far
reaching progress in numerical optinmization. 1In order to be more sPecific,
it will be useful to have a formal statement of the nonlinear least-squares
problen.
Ve edopt notetion consistent with fitting a model to n pieces of
data using p parameter;: Given R: & = RP, ve wish to solve the uncoanstrained

minimization problen

(2.1) min f(x) = % R(x)TR(x) =% ; ri(x)a.
L i=1

Notice thet if J(x) = R'(x) = (3,r;(x)), then the gradient of £ is
(2.2) vr(x) = J(x)TR(x)
and the Hessian of £ is

n
(2.3) Vrlx) = 30T + T r (09 (). :
i=1

Since we ere seeking a minimun of f, we wish to have f(x*) = 0, an

obviously globsl minimum; ir the more realistic case vhere f 1s not anyvhere

o3

near zero, we will be forced to terminate on small parameter changes or to

‘use some other convergence criteria (see Section 6). It is clear from (2.2)

that vr(x*) =0 ana R(x*) # O : corresponds to R(x*) | C(J(x*)); the
column space of J(x*). Thus it is essential as the iteration proceeds that
C(J(xk)) be approxizated very well in the usual case wh;re p<n and
R(x*®) # o.

In addition to making a precise convergence test possible, having an.
accurate Jacobian ratrix means that a good approximation to a portion of
the Hessian is available as & byproduct of the gradient computation. 1In fact,
it is often possible to ignore the second order term zri(x)vari(x) of the .
Hessian eltogether on the grounds that if the nonzero residuals are not of
& sort that reinforce their nonlinearity, J(x)T7(x) is a sufficiently good
Hessian approximati;n [Wedin, 1972, 19T4a-c],[Dennis, 1977]; In the resulting -
Gauss-Newvton method, the "Newton step" from X is defined by the linear

system of equations

(2.4) e) alx)s, = 230x) R(x,). ey

Since (2.4) is the system of normal equations for the linear least-

squares problem
2 *)
(2.5) m.:n 4(3(x)s + R(-xk)) (3(x.)s + R(x)),

it is better to odtain s, from & QR decomposition of J(xk) (see [Golub, 1969]).

Ve can view (2.5) as defining a quadratic model in x = X *+s of

the least-squares criterion function (2.1):

| - TR

(2.6) ad(x) = % RUx)RIx) + (x-x) 30)R (x))

30x-x)70)T) (x-x)«

From (2.1), (2.2), (2.3) we see that the difference between this Gauss-

Newton model and the usual lewton rodel obtained from a quadratic Taylor

expansion eround x is just the term %(x—xk)T[fri(xk)Veri(xk)](x-xk).

i ' The conceptuzl difference between these two models is interesting in
thaet it exposes sore reasons for the deficiencies of the Gauss-Newton

" algorithm. The Newton model is based on the essumption that f can be
adequately rodeled by a quadratic, while the Gauss-Newton model (2.6) is
shown by (2.5) to result from the stronger assucmption that R can be

ndequateiy rodeled by en effine function.

3. An Aucmenteticn of the Gauss-Newton Hessian.

Our purpose in this section is to suggest a way to augment the Gauss-

Newton model (2.6) by edding en approximation to the difference between it

and the quadretic Teylor expansion to obtain
(1) gp(x) = W(x)Rx) + (x-x)" (x) TR(x,)
* Klx-x)30) T0x)) + 8 1(x-x).
We vill suggest an approxization rule for S, which is simple, general

and geometric. The approach is to decide on a set of desirable characteristics

[l for the epproxicant and then to select Sk+1 to be the nearest such feasidle
i point to sk. The rationale is that every point in the feasible set incorporates
’

equally wvell the new information gained at Xeel and that taking the nearest

ks

-5-

point (in a sense to be expleired later) corresponds to destroying as little

of the information stored in Sk as possible.

‘ Currently we begin with So = 0, since this is both cheap and reasonable in

the sense that qg = qg. Suppose S, is available. First let us decide on the properties

k
2 |
should have. Remember that it is to approximate Xri(xk+l)v ri(xk+l) and so :

sk+1

it should obviously be symmetric. It is easy to find examples where the tern i
to be epproximated is indefinite, so we reject any restriction on the eigen-

values of Sk+l'

the probdblemn, Jk+l and Rk+1’ into Sk+1‘

ask the second order approximant to transform the current x-chenge into the

Finally, we want to incorporate the new information about

The standard way to do this is to

observed first order change, i.e.,

- 2
Spe1 8% © zri(xk+l)v ri(xk+1)Axk | 4

(3.2) ui(ﬁ+l)(wi(xk+1) -Vri(xk))

T [WS '
= 1B - NBear Ve : |

It is perheps worth noting in passing that we tested several choices for }

g T T T A
¥, including the Broyden-Dennis [Dennis, 1973] choice Tee1Reer™ TR = Tie1Tke1 %

T T T
and the Betts [1976] choice Tee1Beer - i - JkaAxk. Eappily, (3.2), which
makes more use of the structure of the prodblem, was the slight but clear winner.

T
» Spa and S&x, = yk}.

ed=({s:8=5§
Our choice of S ., from J 1is pade in analogy with the DFP method for .

In summary, we choose So =0

unconstrained minimization (Dennis & More, 1977). Before giving the formula and
.1ts properties, we review some useful notation. ‘

If A is any real matrix, then the Frodenius norn of A is

IlAIIF H (tAfJ)B. If B 1is any symmetric positive gefinite metrix, then

- R — ——— : !II!!IIIIIIIIIIIII“

B has & symmetric, positive definite square root, Bk. Define

||A||F,B = IIB.%AB-%[IF. This wiishted Frobenius norm is a natural

analog of the Frobenius norm for & matrix when the standard inner product' '
norm on the domein is replaced by ||x||B = (x?Bx)%. The ‘following theorem
gives the update formulas as well as their defining properties. It is

Just a restatement of Theorem 7.3 of [Dennis and More, 1977].

THEOREM 3.1: Let vTAxk > 0. Then for eny positive definite symmetric

matrix H for which HAxk = v,

min ||S - S for Sed

kIIF,H
is solved by

T T
Al (yk - SkAxk)\ + v(yk - skAxk) 2
Spe1 = S T

: T T,

In NI2SOL we compute SM1 corresponding to v = ey = Jk+1ak+1 - Jknk.
This corresponds to weighting the change by any positive definite symmetric
matrix that sends Axk to Agk. Thus we hope the metric being used is not

too different frc. that induced by the natural scaling of the problem.

N, Sizing the Hession Ausmentation,

It is well known by now that the update methods do hot'géneraté
approxiretions that become arbitrarily accuraté as the itération proceeds.
On the other hand, we know that for zero residual problems, Sk should
ideally converge to zero and that if it does not at least become small in
those cases, then the augmented model (3.1) cannot h0pé to compete with (2.6),
the Gauss-Newton model.

The crux of the problem can be seen by observing that even if Bk+1

happened to be zero and even if yk defined by (3.2) were used to make the

update to Sk’ then sk*lek o T 0, but Sk+1 would be the same as Sk
on the orthogonal complerment of'{Axk,v}.

We use a straightforward modification of the Oren-Luenburger self scaling

technique [Oren, 1973]. The idea is to update 1, S,» Tather than S, to get

sk+1' The scaler is chosen to try to shift the spectrum of Sk in hopes

Tk
th@t the spectrun of rkSk will overlap that of the second order term we are

approximating. We could take the scalar to be

T 2
oy, [A{[tri(lﬁ(.'_l)v ’i(’ﬁul)]“’&] [Axks WA
T i T

AxkskA¥x AxkAxk A;kAxk

We prefer to call this sizing, and since we ere primarily concerned with Sk

being too large, we actually teke

T
Ax, ¥y | ¢
’ .

(4.1) ¢, = min
Dy A"Esx“x

“LL‘

-’ e S——

B

Tk

to make a last few refining iterations based on the augmented Hessian. The

Vhatever this strategy is called, notice that when Rk+l = 0, our

¥ =0, and so T =0and S 0. The use of sizing factor (4.1) made

k K+l

& significant difference in the performance of the algorithm. See Table IV.

Se Adaptive Quadratic Modeling.

In section 3 we noted that S_. = 0, which means that the augnmented model

0
(3.1) is initially equal to the Gauss-Newton model (2.6); Tests have shown
that often qg(xk+l) predicts f(xk+l) better than qi(xk+l) for smell k,
so it seems useful to have some way to decide which model to use to determine
the step. .
Betts [1976] also staéts with So = 0 and takes Gauss-Newton steps

for at least p iterations and until bx,
likely that X1 is near x*. It seems therefore as though his aim is

is small enough to make it

heuristic we use in NL2SOL usually uses the augmented Hessien much sooner.
KL2SOL uses e model/trust region strategy to piék A% . -The step is

of the form
2 -1
(5.1) ax, = (2, D) + H) vr(ﬁ).

vhere Ek is the current Hessian approximation, Dk is & diagonel scaling
matrix and xk > 0 is chosen by the safeguarded Reinsch -iteration as in

[Moré, 1978], with the case of near singularity in aknf + B handled as in
[Gay, 1979]. The important thing is the idea of having at x, & local quadratic
model 9y of £ and an estimate of a region in which 9y is trusted to

represent f. The next point Xeel is chosen to approximateiy minimize %Q

~Oe

in this region or to minirize 9 in an approximation to this region. In
eitper case, the information gained ebout f at X+l is then used to
update the model and also to update the size or shepe of the trust région.

We begin with the a;sumption that qg holds globally. Since the
trust region revision is always based on the length of the step just taken,
this causes the redius to be set automatically by the initial Gauss-Newton
step. This scheme oftén works well, but it can have problems. If the Gauss-
Rewton step is too long, the trust region may have to be shrunk repeatedly with
attendant evaluations of the residual function R to obtain an acceptable X
Much more serious is the possibility of overflow. The initial assumption bf
global linearity can be over;uled by assigning a small value to V(LMAXO), tke

maximum length allowed for the very first step attempted.

Figure 1 will perhaps be helpful at this point. The ellipses represent
the c;ﬂtou¥s of 9 and the circle is the trust region -- our picture assumes
the diagonal scaling matrix Dk to be the identity. T?e point ANk is the "Newton
step” or global minimum of the convex quadratic model qk, and the curve s(r)
represents the locus of minimizers of qk(xk ; s) constrained by
||s||2 <r,0<r< e Complete details, based largely on [Moré, 1978], can be
found in [Gay, 1979], dbut we choose Axk = s(r) so that ||DkAxk||2 lies between
0.9 and 1.1 of the current trust radius. (The actual choice of Dk is discussed
in Section 7.)] ‘
Since we were using this'adaptive approach, it is not surprising that
ve also thought of using the new information at x#*l to select between

S !
U and q:’l for use in determining Xp42° Our decision rule is rather

Figure I

continuing to seek an acceptable o1t

=10~

straightforward. Since So = 0, we begin using the Gauss-Newton model.

After raking e prospective step based on the currently preferred rodel éi

1

3
to odtain, say, xi*l, we compute Ri+1 and fk+1' If fk+l fk then

2 : &
xi*l is discarded, but first the other mode; 9 is evaluated at X4l

to see how well it agrees with f;+1. If there is not sufficient agreement

2] 2
betveen fi ., and q, (1.e.,; it
1,1 3 1
(5.2) lqk("ku) k+1l £ !qk a) - k+1l_)’

then we keep the original rcodel preference, shrink the trust region, and
try egain. We shrink the trust region radius by the factor suggested by
Fletcher [1971) end described by More [1978, p. 109]. If the agreement

e ! 2.1
between fk+l and qk(xk+l) is sufficiently good, then we change our |
model preference to qi and conpute xi+l using the same trust region. If

4 is unaccepteble, then the trust region is shrunk end we repeat the
a1 P

“above process on the smaller trust region with whichever model gave the

least function value, but now we no longer consider changing models while

If, say Xi+l yields an ecceptable function decrease but

(5.3) f(ﬁl‘ﬂ) - £(x) _f_max{lo-[q;(x;'_‘_l) - f(x)],
0.75-92(x) (xy,, - %))

1
end Ax, = x ., - X vas computed by (5.1) with), > 0, then we deem it
vorthwhile to try recoaputing x;+l with a larger trust region radius
before accepting the step. Fence we double the radius and obtain, say,
]

1' 1' 1
Xy If t(xk+1) < f(xk+1). then xi*l replaces x§§l and ve again check

]
vhether to doudle the radius. Otherwise we discard x;*l and accept

1
a1 *5 %

=11~

¥hen an acceptable X is found, q;(xk+l) and qﬁ(xk+l) are

compared to rk* .We have found that it ic best to retain the currently

1
preferred model if (5.2) holds with xi+l = xk+l,‘i.e., unless the other
model does a significantly better Job of predicting the new function value.
Once X4 haes been found, we decide what trust region radius to use
first when seeking x, ... The radius chosen has the form ulle+lek|l2,
vhere Ax = x .. - X. If f(Xk+l) - f(xk) 3_0.1-[q:(xk+1) - f(xk)], then u
is Fletcher's [1971) decrease factor; if either (5.3) holds with xi+1 = X410
or ”quiAxk -[velx,) = velx)]]]; < 0.5]|ve(x)], or '
Ax:v;(xk+l) < O.TS~Ax:Vf(xk), then yu = 2; otherwise y = 1. This rule for

updating the radius is a mcdification of one described by Powell [1970].

6. Convergence Criteria and Covariance.

An important. sometimes difficult issue in practical computing is the
matter of deciding when to stop an itefative procedure. We have chosen to
include four c;nvergence criteria in NL2SOL: tests for "cosine convergence",
"variability convergence", "residual convergence", and "X-convergence".

At any critical point of the sun of squares function (2.1), such as the
desired minimizer x%, the residual vector R is orthogonal to all columns
of the Jacobian matrix J. Moreover, the angles between R and the columns

of J are independent of the scale of R and columns of J, so it is reasonable

.40 use a test based on these angles [Dennis, 1977]. Hence, we define

0 ir R(x) =0

(6.1) cosmax(x) = : 0
max{|J, ((x)"R(x)[/([3, (=)][,][R(=x)]]5)

Ji®
otherwvise,

I, (D] >€,,1 <t < B
]

e

-12-

vhere J, i(x) is the 1! colunn of J(x), and we detect cosine convergence
]

at any iterate X, for which COSI»ZAX()H") is less than or equal to the cosine

-9

convergence tolerance V(CCONCR). By default, €_. =10

Ji , So the COSMAX is

scale invariant over a wide range of problens.
For statistical data analysis a different type of convergence criterion

is often appropriate. Since there is inherent variadbility in the date, it is

generally not useful to continue iterating when a candidate step s=(sl_,... ,sp)= Axk

is generated for which
(6.2) ; max {|si|/s.e. (xi)}
1 :

!fs sufficiently small. Here s.-e.(xi) denotes some estimate of the standard
error (équare root of the variance) of the ith component of the current parameter
estimete X and so is a function of the statistical variability in the data.

An alternative to (6.2) suggested by Pratt [1977] is to consider general

linear combinations !.Ts of the components of s, i.e.
(6.3) ui{IszI/(vakz);’: 14 0} = (sTvle)%,

wvhere V. 1is a current estimate of the covariance matrix. . For s.e. (xi)

k
= (ezvkei);s, vhere e, is the i standard unit vector, (6.3) clearly dominetes

(6.2), so we have chosen to include a test based on (6.3).

Our choice for Vk wes 312‘11;1, where 5: is the cux;rent residual sum

of squares divided by wmax{l,n-p}, i.e.
(6.4) 8 = 2tlx)/oax(,o-p,

end H_ is the current Hessian epproxiration, i.e. 3Ts (xk) for the Gauss-

Newvton model and J1J (xk) + S, for the augmented model. Whenever a candidate

=33

step s 1s genmerated for which Hy is positive definite, we thus compute
¢ : . .5
(6.5) - VARIAB(s) = s'E /9,

end we detect variability convergence if VARIAB(s) does not exceed the °

variability convergence tolerence V(VCONCR).

For full Newton steps, i.e. s = s H;lvr(xk), (6.5) gives a quantity

closely related to the relative reduction PRED, , in f(xk) that is still

possible eccording to the current model. Specificelly, (6.5) and (6.4) imply

YN _

PRED, = [-Vf(x, -;—SNTHksnl/f(xk)

" .
= %s“ HksN/f(xk)
)

= VARTAB(s)/max{1,n-p}.

Thus et least for full Newton steps (the steps usually taken near x"), the
variability convergence test checks whether the predicted relative reduction

still possible in the residual sum of squares is small.

-

Zero-residual prodlems, those for which ﬁ(x*).;.o, require special

consideration. Indeed, it can be shown that if J(x*) is nonsingular, then

1lim inf cosMAX(x) > 1/[p;s
[[x-x*][+0

number of J (ratio of largest to smallest singular valuef. Moreover, for

cond(J(x*))] > 0, wvhere cond(J) is the condition

e = s(x) the Newton step from the Gauss-Newton model, i.e. s(x) = r(JTJ(x))-lJTR(X),
it is easily seen that 1lim VARIAB(s(x)) = max{l,n-p}. To handle this case,

x+ x*
KI2SOL detects residuasl convergence if [[R(xk)[[< V(RCONCR). We regret that

this convergeace test nust be sensitive to the scaling of R.

'rﬂr‘"*“““'*"”* ” - R , . ' ; o ™

1l

It is easy to specify convergence tolerances too strict for the precision

of the arithmetic being used. We have therefore included a fourth convergence

test, the X-convergence test, vhich often works when overly tight tolerances
have been given for the other tests. This test is satisfied whenever a step
s is generated that yields a much smaller function decrease than e#pected
(i.e. f(xk+s) 3_f(xk) + sTVf(xk)/lO) and the relative change that s causes

in x is small, i.e. RELDX(xk,xk+s) < V(XCONCR), where
RELDX(y,z) = mix [zi-yill[lzil + (Yi‘]- §

Many statistical inference procedures require an estimate of the covariance

matrix et the solution x*. NL2SOL provides three possibilities:

(6.6) Fut g% at ,
(6.7) &t
(6.8) & (T : . S

vhere &> is given by (6.4) with x, = x*. When (6.6) or (6.7) is specified, i
] a symmetric finite difference Hessian approximation H is obtained at the
solution, x*. If H is positive definite [or J is non-singular at x* |

for (6.8)], the specified covariance matrix is computed. ' 1

A detailed discussion of all three covariance forms is contained in {Bara,197L].

The second form (6.7) is based on asymptotic maximum likelihood theory and is perhaps

the most corzmon form of estimated coviriance matrix. We feel that (6;6), the |
default, 1s more useful for smaller semple sizes and in other cases where the

conditions necessary [Rao, 1965] for the asymptotic theory may be violated. The |

third form assumes that the residuals at the solution are small and is therefore

often highly suspect.

-15-

1. Test Lesults

We have run NS2SOL on & number of the test problems reported in the
literature. In particular, we have run it on the test problems listed in
[Gill & Murray, 197€) end on one described in [Meyer, 1970]. The original
sources for these problers, together with the abbreviated problem names used

in Tables II-IV and soxe notes, are given in Tabdble I.

Table I

Originel Sources of Test Problems

Problen Note Source

ROSNBROK [Rosenbrock, 1960]

HELIX g [Fletcher & Powell, 1963]
SINGULAR [Powell, 1962]

WOOoDs [Colvxlle 1968]

ZANGWILL 2 [Zzangwill, 1967]

ENGVALL [Engvall, 1966]

BRANIN [Branin, 1971]

BEALE [Beale, 1958]

CRAGG 3 [Gill & Murray, 1976]
BOX [Box, 1966]

DAVIDONL 4 [Davidon, 1976]

FRDSTEIN 5 [Freudenstein & PRoth, 1963]
WATSONG6,9,12,20 [Kowalik & Osborne, 1968]
CHEBQDS [Fletcher, 1965]

BROWN (3 [Brown & Dennis, 1971]
BARD [Bard, 1970]

JENNRICH (Jennrich & Sampson, 1968}
KOWALIK . [Kowalik & Csborne, 1968]
OSBORNE1,2" [osborne, 1972]

MEYER [Meyer, 1970]

Notes on Tadble I

Note 1: The residual vector R(x) for this problem is a discontinuous
function of x. On those runs where NL2SOL halts with X-convergence, the
iterates have converged to a point of discontinuity.

Note 2: This is a linear least-squares prodlem which NL2SOL solves
in one step vhen the limit V(LMAXO) on the length of the first step is increased
slightly from its default value.

Note 3: The original Miele problem described in [Cragg & Levy, 1969], which
Gill and Murray [1976] cite es the source for this problem, does not have the last
residual component rs(x) = x;, = 1. This new conponent forces x, to move more

rapidly towards 1, but otherwise causcs no noteworthy change in the performance
given by NL2SOL.

a—— ———— . . IHI!IIIIIIIIIIIIIIJ

-16-

Note U: This is another linear least-squares problem, one that is so
111 conditioned that NL2SOL needs two steps to solve it when using double
precision on an IBM 370 computer with V(LMAXO) set large. With a double
precision of a few bits more accuracy, such as that of the MULTICS (i.e.
Honeywell) machine or the Univac 1110, a single step suffices (for large
v(LMAX0)).

Note S5: In ell our test runs, NL2SOL found a local solution to this
problem. The residuel vector vanishes at the global solution.

Note 6: Gill and Murray [1976] call this problem "Davidon 2".

The behavior of NIL2SOL is determined in part by an integer array IV and
a floating-point array V, vhich contain iteration end function evaluation limits,
convergence tolerances, and other switches and constants. In the runs sumrcarized
in Tadbles II-IV, most of tﬁe IV and V input components had the default values
given them by subroutine DFAULT. Exceptions included the following: variability
convergence testing was turned off by setting V(VCONCR) = O; and on problex
MEYER, the iteration and function-evaluation limits were increased.

Table II summarizes the perfornaﬁce of NL2SOL on the test problem set
vhen all IV end V input components have their default values, with the exceptions
Just noted. Following & suggestion of J.J. Moré [1979], we obtained new
starting gueﬁses for many of the test problems by multiplying the standard
starting guess by ten and one hundred. The column labelled LS gives the
base 10 logarithm of the factor bty which the standard starting guess was
multiplied. The problem dimensions appear in the columns headed N and P,
vhile the number of function (i.e. R(x)) and gradient (i.e. J(x)) eveluatioas
performed respectively appear under NF and NG. The column labelled F gives
the final function value (half the sum of squares of R(x)), vhile the one
labeled COSMAX gives COSMAX(x), computed from (6.1) (with e:x = 10’9).

at the final x. Under C 4is a code telling why NL2SOL stopped: R means

residual convergence, i.e., ||R(x)]], :_10-9; C means cosine convergence,

i.e. COSMAX(x) :_10-7; X means X convergence (see §6) with

V(XCONCR) = 2.22 x 1023

; and F means function evaluation limit reached
without convergence. The results reported in Tables II-IV were obtained on
the IBM 370/168 cozputer at the Massachusetts Institute of Technology, and
the convergence tolerances just mentioned are the defaults for this machine,

vhich has a unit roundeff of 36 & 2.22 x 10-16

in double precision, the
precision used.

The choice of scale matrices Qk mentioned in §5 can significantly.
affect the perforrance of NLZSOL; By default; B = diag(d?,...,%S) is
updated by the rule

-3

a¥ = max {[]]7, .||§ + nax{0,5,,}]*,o.6d§'1,1o }

i 53

at the start of each iteration, beginning with d; = 0, where J; denotes
]

i i
the ith column of the current Jacobian matrix J(xk). (The factor 0.6 is
actually V(DFAC). We experimented with several values of V(DFAC), including
zero, 0.5, 0.75, and one, and we felt that 0.6 gave the best overall performance
of the values tried.) The advantage of this choice of Dk .is.that it is
largely scele-invariant.
A choice of Dk vhich is not at all scaie-invariant, but which gives better
performance on rany of our test prodlems, is Dk = I, the-identity matrix; Tadble
III shows how these two choices of Dk compare: results from Table II are repeated

in the columns headed DEFAULT, while results corresponding to Dk = I appesr

under D = I,

il e : |

Teble III also gives results from two other test runs. Those under
V(LMAXO) = 10##10 show what happens when the bound V(LMAXO) on the 2-norm

of the very first step attempted is increased from its default value of 100

to 1ol°, while those under V(CCONCR) = 10##-8 show what happens when the

7

cosine convergence tolerance is decreased from 10 ' to 10-8. In both of

these test runs the default Qk was used.

-~ De— R—
-19-
Table I1
Default NL2SOL Test Summary

PROBLEM LS N P NF NG C F COSMAX

ROSNBROK 0 2 2 L5 13 R 0.973E-32 0.999E+00
ROSNBROK 1 2 2 59 44 R 0.3/3E-32 0.999L+00
ROSNBROK 2 2 2 156 135 R 0.973E-32 0.999E+00
HELIX 0 3 3 LS 13 R 0.323E-18 0.100E+01
HELIX 1 o3 12 10 R 0.221E-23 0.777E+00
HELIX 2 S kel 7 X 0.864E+04 0.744E+00
SINGULAR 0 &4 4 18 18 R 0.273E-18 0.962E-04
SINGULAR 1 4 4 22° 22 'R 0<806E~19 0.55IE=04
SINGULAR 2 & 4 30 26 R 0.849E-19 0.522E-04
WOODS 0 7l 56 43 R 0.390E-21 0.707E+00
wOODS 1 7 4 64 4 R 0.143E-24 0.772E+00
WoOoDS 2 74 75 51 R 0.523E-23 0.721E+00
ZANGWILL 0 3 3 3 3 R 0.147E-27 0.896E+00
ENGVALL 0 5 3 16 13 R 0.124E-24 0.999E+00
ENCGVALL 1 5 3 20 19 R 0.525E-22 0.999E+00
ENGVALL 2 5 3 34 28 R 0.417E-24 0.999E+00
BRANIN o1 (e 2 2 R 0.162E-28 0.945E+00
BRANIN 1 2 2 16 15 R 0.100E-27 0.868E+00
BRANIN 2 2 2 15 12 R 0.864E-32 0.868E+00
BEALE 0 s 10 9 R 0.893E-26 (0.542E+00
BEALE 1 3 2 6 6 R 0.148E-21 0.997E400
CRAGG () R R R 21 R 0.289E-18 0.197E+00
CRAGG 1 5 4 75 .43 € 0.592E402 0.415E=07
BOX 0 3 21 15 R 0.208E-31 0.958E+00
BOX I et 19 11 C 0.378E-01 0.385E-11
BOX 2 10 3 23 14 C 0.378E-01 0.104E-07
DAVIDONL 0O 15 15 9 8 C 0.710E-04 0.910E-07
FRDSTEIN O 2 2 9 8 € 0.245E+02 0.600E-07
FRDSTEIN 1 2 2 19 12 C 0.245E+402 0.254E-08
FRDSTEIN 2 2 2 35 19 C 0.245E+02 0.452E-11
WATSON6 () S 6 11 10 C O0.114E-02 0.822E-07
WATSON9 0 31 9 11 9 C 0.700E-06 0.114E-08
WATSON12 0 31 12 13 12 C 0.236E-09 0.902E-08
WATSON20 0 31 20 10 10 C 0.152E-14 0.624E-07
CHEBODE. & 8 8 24 18 C 0.176E-02 0.342E-08
CHEBQD8 1 8 8 85 61 C 0.176E-02 0.586E-07
BROWN 9 4 19 16 C 0.429E405 0.101E-07
BROWN 2w & 22 19 C 0.429E+05 0.731E-07
BROWN Z 20 32 26 C 0.429E+05 0.856E-08
BARD (DR A 6 6 C 0.411E-02 0.203E-07
BARD I 15 3 42 28 C (.871E401 0.858E-07
BARD 2 15 2 S 9 C 0.871E+01 0.615E=07
JENNRICH 0 10 2 15 12 C 0.622E+02 0.212E=-08
KOWALIK 0 11 4 11 10 € 0.154E-03 0.729E-07
KOWALIK 1eekl 4 163 90 C O0.514E-03 0.712E=07
KOWALIK 2 11 4 81 61 C O0.154E-03 0.563E-07
OSBORNEL O 33 5 23 19 C 0.273E=04 0.645E=08
OSBORNE2 0 65 11 L7 16 C 0.201E-01 0.183E=07
OSBORNE2 1 65 11 28 12 C 0.895E+00 0.121E-Q7
MADSEN Qe T3 11 [I C 0.387E400 0.975E-07
MADSEN 1 3 2 12 12 € 0.387E+00 0.185E=07
MADSEN 2 3 2 23 22 C 0.387E4+00 0+¢195E-07
MEYER 0 16 3 228 167 C 0.440E402 O0.211E=10

— bt Nt o i

-20-
Table II1I
Some Nondefault Test Runs

V(LMAXO0) V(CCONCR)
DEFAULT D=1 = 10%*10 =]10%*-8

PROBLEM LS NF NG C NF NG C NF NG C NF NG C
ROSNBROK O 15 13 R 20 16 R 15 13 R 15 13 R
ROSNBROK 1 59 44 R 36 27 R 68 54 R 59 44 R
ROSNBROK 2 156 135 R 54 45 R 178 140 R 156 135 R
HELIX 0 15 13R 8 B8R 15 13 R 15 13 R
HELIX 1 12 10R 11 9 R 13 11 R 12 10R
HELIX 2 125 37X 17 14 R 20 16 R 125 37 X
" SINGULAR 0 18 18 R 18 18 R 18 18R 18 18R
SINGULAR 1 22 22 R 22 22 R 22 22 R 22 22 R
SINGULAR 2 30 26 R 28 26 R 25 25 R 30 26 R
WOOoDS 0 56 43R 56 42 R 56 43 R 56 43 R
WOOoDS 1 64 44 R 70 46 R 67 50 R 64 44 R
WooDS 2 75 51 R 61 47 R 67 49 R 75 S1R
ZANGWILL O 3 3R 3 3R 2 2R 3 3R
ENGVALL 0 16 13 R 16 14 R 16 13 R 16 13 R
ENGVALL 1 20 19 R 20 18 R 20 19 R 20 19 R
ENGVALL 2 34 28R 28 25 ¢C 33 24 R 34 28R
BRANIN 0 20 = 2R 2 2R 2 2R 2 2R
BRANIN 1 16 15 R 17 15R 16 15R 16 15R
BRANIN 2 15 12 R 18 16 R 22 21 R 15 12 R
REALE 0 10 9R 10 8R 10 9 R 10 9 R
BEALE 1 6 ©6R 8 B8R 6 6R 6 6R
CRAGG 0 22 21R 21 20 R 22 21R 22 21 R
CRAGG 1 75 43 C 48 43 R 46 39 C 76 44 C
BOX 0 21 15R 6 6R 6 6R 21 15 R
EOX 1 19 11 C 27 15 ¢C 40 21¢C 19 11C
BOX 2 23 l4C 29 16 C 6 6°C 25 15¢C
DAVIDON1I O 9 8C =3 R 3 3R 10 9¢C
FRDSTEIN O 9 8C¢C 9 9¢C 9 8C¢C 10 9¢C
FRDSTEIN 1 19 12¢C 19 14 C 14 13 C 19 12 C
FRDSTEIN 2 35 19 C 30 22 ¢C 19 17 C 35 19 C
WATSON6 O 11 10 C 8 8C 11 10C 12 11C
WATSON9 O 11 9 ¢C 11 9¢C 11 9¢C 11 9C
WATSONI2 0 13 12 ¢C 13 11 C 13 12¢C 13 12¢C
WATSON20 O 10 10C 9 9¢C 10 10C 200 96 F
CHEBQD8 0 24 18 C 23 17 ¢C 24 18 C 24 18 C
CHEBQD8 1 85 61C 74 61 C 106 66 C 100 66 X
BROWN 0 19 16¢C 15 14 C 19 16 C 22 17 C
BROWN 1 22 19¢C 16 16 C 20 18 C 23 «20 C
BROWN 2 32 26C 26 24 C 25 23.¢ 32 26 C
BARD 0 6 6C 6 6C 6 6C 7 7¢C
BARD 1 42 28¢C 47 27 C 33 24 C 546 ¥ C
BARD Z 21 9¢C 29 17 C 8 7¢C 30 15 C
JENNRICH 0 15 12 ¢C 15 12 C 15 12 C 15 12 C
KOWALIK 0 11 10C 16 12 C 11 10C 12 11C
KOWALIK 1 163 90 C 200 72 F 163 90C 172 96 C
KOWALIK 2 81 61 C 96 67 C 79 62 C 82 62¢C
OSBORNE1 0 23 19 C 30 26 C 23 19 ¢C 23 19 ¢C
OSBORNE2 0 17 16 C 17 14 C 17 16 C 18 17 ¢C
OSBORNE2 1 28 12 ¢C 24 13 C 28 12 C 30 13 ¢C
MADSEN 0 11 11¢C 11 11¢C 11 11¢C 12 12 C
MADSEN 1 12 12 ¢C 13 13¢C 12 12 ¢C 13 13¢C
MADSEN 2 23 22¢C 20 19 C 23 22¢C 24 23 C
MEYER 0 228 167 C 350 198 F 315 202 C 228 167 C

21~

Notes on Tadle III.

2, a local minimizer x® having

n

Note 1: For problem ENGVALL with LS
f(x*) = 56.1 was found in the D = I run.

Note 2: For problem CRAGG with LS = 1, a different locel minimizer x¥,
one having f(x*) = 249, was fgund in the v(i&mx¢) = 10##10 run than in the
DEFAULT run.

Note 3: For problems WATSON20, CHEBQDB;'and BROWN; a cosine convergence
tolerance of 10-8 appears too tight for the double-precision arithmetic of an
IBM 370 computer. X;convefgence did not occur on WATSCN20 because one of the
x components hovered ebout zero. The run with V(CCONCR) = 10%*-8 achieved
f(x) = 6.46 # 10-18 on this problem (and had f(x) = 6:53 x 10-18 after 20

function and 16 gradient evaluations),

Note 4: For problem BARD with LS= 2, the D

I run found the solution

obtained in the DEFAULT run with IS = O.

Table.IV summarizes test runs with three variants of NLZSOL; all of which
used the default choice of Dk end the same IV and V inputs as were used for
Table II. The columns headed PURE GN show what happens if the esugmented model
is never used, while those headed PURE S show what happens. if it is always used
(after the first iteration). Finally, the columns headed NO SIZING give the

results obteined when adeptive modelling is allowed but no sizing is performed.

We feel that Table IV makes a good case for the use of adaptive modelling with

sizing in NI2SOL.

ROSNBROK
ROSNBROK
ROSNBROK
i HELIX
HELIX
HELIX
SINGULAR
SINGULAR
SINGULAR
WOODS
WOODS
WOODS
ZANGWILL
ENGVALL
ENGVALL
ENGVALL
BRANIN
BRANIN
BRANIN
BEALE
BEALE
CRAGG
CRAGG
BOX

BOX

KOX
DAVIDONI
: FRDSTEIN
FRDSTEIN
FRDSTEIN
\'ATSONG6
; WATSON9
t WATSON12
WATSON20
CHEBQDS8
CHEBQDS
BROWN
BROWN
BROWN
BARD
3ARD

L . BARD
JENNRICH
FOWAL IK
KOWALIK
KOWALIK
OSBORNEL
OSBORNE2
CBORNEZ
MADSEN

| MADSEN

| MADSEN

' MELYVR

PROBLEM LS

— O ONME OON ~ON~O OO0 O0OONOONMFEFO MO ONMEHONFRFOONONRONHRON~O

(i

= S I

DEFAULT

NF

15
59
156
15
12
125
18
22
30
56
64
75
3
16
20
34
2
16
15
i0
6
22
75
21
19
23
9
9
19
35
11
11
13
10
24
85
19
22
32
6
42
21
15
11
163
81
23
17
28
11
12
23
228

NG

13
44
135
13
10
37
18
22
26
43
44
51
3
13
19
28
2
15
12
9
6
21
43
15
11
14
8
8
12
19
10
9
12
10
18
61
16
19
26
6
28
9
12
10
90
61
19
16
12
11
12
22
167

c

o000 CO00000N00O000N00N0 00000000 ITPOME WIX VIXIODIINK DD DD

-2
Table 1V
Variations on NL2SOL

PURE GN

NF

20
38

NG

16
33

113 103

10
12
16
18
22
30
77
80
74
3
15
14
28
2
16
15
10
6
21
153
22
20
25
9
26
37
46
13
11
13
10
43
118
128
153
82
6
42
21
22
26
108
109
17
17
14
45
42
56

10
11
14
18
22
26
67
65
55
3
13
14
27
2
15
12
9
6
20
100
16
12
16
8
15
22
22
12
9
12
10
29
78
84
89
59
6
28
)
12
25
78
85
15
15
12
45
42
55

282 183

C

cCcoCcoOoaOcCcC OO0 0000000000 CON000NOYON T XTI IO XXXV OPOONIXD XX

PURE S

NF

24
65
200
22
25
38
29
35
43
47
47
62
3
19
25
38
2
24
38
19
14
38
200
46
61
38
9
8
24
44
k5
21
21
16
22
131
19
24
33
10
76
83
13
20
200
200
34
16
18
12
16
&3
321

NC

21
55
45
19
16
23
29
35
42
34
40
47
3
17
22
36
2
23
35
14
13
35
120
26
52
24
8
8
18
29
11
14
17
15
18
90
17
23
28
10
34
26
12
15
63
76
31
15
10
12
16
23
183

c

OO0 0OMmMO0OO0000000000000N00O00TDMOXY XWX XX WIIPIXWIIOIDIMDD

NO SIZING

NF

20
58

NG

16
45

122 111

10
13
140
18
22
30
80
116
80
3
16
18
27

200
19
20
25

9

9
22
38
12
12
14
10
22

147
24

141

200

6
43
21
15
12
99

10
10
39
18
22
26
50
67
58
3
13
17
26
2
15
12
9
6
21
99
14
12
16
8
7
14
21
11
10
11
10
16
98
19
78
107
6
29
9
13
11
73

184 151

17
17
30
13
14
30

15
16
14
13
14
26

189 138

c

OO0 000O0OHOOOOOOMOOOO00O0OO00O0OC000 X MPXPIX PO OPYHIIIITNK DI DD

NOTE

NN

y UG

Lasan N
[Uy

F3T QUALLTY PRAGTIGAFLT

335

o318 PACE 18 B
M oYl

)30

Notes on Table IV

Note 1: Each of the runs listed for problem CRAGG with LS =1 found

e different local minimizer x®. The DEFAULT run found f(x*) = 59.2; the

h; the PURE S run found f(x*) = L.37;

L

PURE GN run found f(x*) = 9.98 x 10

end the NO SIZING run found f(x*®*) = 1.11 x 10 \
Note 2: While the other runs of problem BARD found the same local

minimizer as the corresponding DEFAULT run, the PURE S runs gave different

results. For LS = 1, the PURE S run found f(x"*) = k.11 x 10'3 (as aid

the DEFAULT run with LS = 0), and for LS = 2, it found f(x*) = 8.4s5.

-24-

REFERENCES

BARD, Y. (1970), Comparison of gradient methods for the solution of nonlinear
parameter estization problems. SIAYM J. Numer. Anal. T, pp. 157-186.

BARD, Y. (1974), Nonlineer Parameter Fstiration, Academic Press, New York.

BEALE, E.M.L. (1958), On an iterative method for finding & local minirum of &
function of more than one varizble. Tech. Rept. No. 25, Statistical
Techniques Research Group, Princeton University, Princeton, lNew Jersey.

BETTS, J.T. (1976), Solving the nonlinear least square problem: Application
of & general method. J. Octimization Theory Aspl. 18, pp. 469-L8k.

BOX, M.J. (1966), A comparison of several current optimization methods and

the use of transformatlons in constrained preoblems. Comput. J. 9, pp. 67-77.

BRANIN, F.H. (1971), Widely convergent method for finding rultiple solutions of
simultaneous nonlinear equations. IBM J. Pes. Develoo. 16, pp. 504-522.

BROWN, K.M. and DENNIS, J.E. (1971), A new algorithm for nonlinear least-squares
curve fitting. in Matheraticazl Software edited by John R. Rice, Academic

Press, New York, pp. 391-396.

COLVILLE, A.R. (1968), A comparative study of nonlinear programming codes. IBM
New York Scientific Center Tech. Rept. No. 320-29k9.

CRAGG, E.E. and LEVY, A.V. (1969), Study on a supermemory gradient method for
the minimization of functions, J. Ovtimization Theory Avpl. 4, pp. 191-205.

DAVIDON, W.C. (1976), New least-square elgorithms, J. Optimization Theorv Aool.

{18, pp. 187-197.

DENNIS, J.E. (1973), Some computational techniques for nonlinear least squares
problem. in Numericel Solutions of Systems of Nonlinear Eguations edited
by G.D. Byrne and C.A. Hall, Academic Press, New York.

DENNIS, J.E. (1977), Nonlinear least squares and equations. in The State of the
Art of Numericel Analysis edited by D. Jacobs, Academic Press, London

DENNIS, J.E. and'MORﬁ, J.J. (1977), Quasi-Newton methods, motivation end theory,

DENNIS, J.E. and WELSCH, R.E. (1978), Techniques for nonlinear least squares and
robust regression. Comnm.. Statist. BT, pp. 345-359.

- ENGVALL, J.L. (1966), Numetrical algorithm for solving over-determined systems

of nonlinear equations. NASA document NT0-35600.

FLETCEER, R. (1965), Function minimization without evaluating derivatives--a
reviev. Comput. J. 8, pp. 33-41.

-4

-25-
FLETCHER, R. (1971), A modified Marquardt subroutine for nonlineer least
squares, A.E.R.E. Earwell report R6799.

FLETCHER, R. and POWELL, M.J.D. (1963), A rapidly convergent descent method
for minimization. Cozvut. J. 6, pp. 163-168.

FREUDENSTEIN, F. and ROTH, B. (1963), Numerical solutions of nonlinear equations.
J. Assoc. Comput. Mach. 10, pp. 550-556.

GAY, D.M(1979), Computing optimal locally constrained steps, in preparation

GILL, P.E. and MURRAY, V. (1976), Nonlinear least squares and nonlinearly
constrained ortimization. in Lecture Notes in Mathematies No. 506 Humerical
Analysis, Springer-Verlag, Berlin, Heidelberg, and New York.

GILL, P.E. and MURRAY, W. (1976), Algorithm for the solution of non-linear
least-squeres problean. NPL Report NAC Tl.

GOLUB, G.E. (1969), Matrix decompositions and statistical calculations. in
Statistical Comrutation edited by R.C. Milton and J.A. Nelder, Academic
Press, New York, pp. 365-397.

JENNRICH, R.I. and SAMPSON, P.F. (1968), Application of step-wise regression
to nonlinear estimation. Technometrics 10, pp. 63-T2.

KOWALIK, J.S. erd OSBORNE, M.R. (1968), Methods for Unconstrained
Optimization Problems, Americen Elsevier, New York.

MEYER, R.R. (1970), Theoretical end computational aspects of nonlinear regression.
in-Nonlinear Procramming edited by J.B. Rosen, O.L. Mangasarian, and K Ritter,
Academic Press, New York. =

MRE, J.J. (1978), The Levenberg-Marquardt algorithm: implementation and theory.
in Lecture Notes in Mathematics No. 630 Numerical Analysis edited by G. Watson,
Springer-Verleg, Berlin, Heidelberg and New York.

MORE, J.J. (1979), Implementation and Testing of Optimization Software, DAMIP
Report 79/NAl , University of Cambridge, UK. :

OREN, S.S. (1973), Self-scaling variable metric algorithms without line search
for unconstrained minimization. Math. Comput. 27, pp. 873-885.

OSBORVE, M.R. (1972), Some aspects of nonlinear least squares calculations.
in Numerical Msthods for Nonlinear Ootimization edited by F.A. Lootsma,
Academic Press, New York and London.

- —

POWELL, M.J.D. (1962), An iterative method for finding stationary valucs of a
function of several variables, Comput. J. S, pp. 147-151.

POWELL, M.J.D. (1970), A FORTRAN subroutine for unconstrained minimization,
requiring first derivatives of the obJective function. Report AERE-R.6469,
A.E.R.E. Harwell, Oxfordshire, England.

26~

PRATT, J. W. (1977), When to stop & quasi-lNewton search for a maximu@ likelihood
estimate. Working paper 77-16, Harvard Business School, Soldiers Field Rd., Boston,
Mass.

RAO, C.R. (1965), Linear Statistical Inference and Its Apvlications, John
Wiley & Sons, New York.

ROSENBROCK, H.H. (1960), An automatic method for finding the greatest or
least value of a function. Cozput. J. 3, pp. 175-184,

WEDIN, P-A. (1972), (197ka), The non-linear least squares problem froz a ‘?
numerical point of view, I and II. Lund. Univ. Computer Sci. Tech. Repts.

WEDIN, P-A. (1974b), On surface dependent proverties of methods for separable

non-linear least squares problems. Inst. for tellimpad matematik, Box 5073
Stockholnm 5, ITM Arbetsrapport nr. 23.

WEDIN, P-A. (197Lkc), On the Gauss-Newton method for the non-linear lezst

squares problem. Icst. fOr tellimpad matematik, Box 5073 Stockholz 5,
ITM Ardetsrapport nr. 2.

ZANGWILL, W.J. (1967), Nonlinear programming via penalty functions. }anage=ent
Sei. 13, pp. 34k-358.

T I Y——————

=2

APPENDTIX

NL2SOL Usage Summary

0. Contents

1. Purpose

2. Method
3. Calling Sequence
4. Example

S. Return Codes

6. IV Values

7. V Values of Primary Interest

8. Finite-Difference Jacobians -- VLZSNO
9. Restarting

10. Scaling

11. LMAXO: Limiting the First Step Length
12. Local Solutions

13. Printed Output

14. Changing Computers

15. Using Reverse Communication -- NL2ITR
16. STOPX

17. Other V Input Values

18. Storage Requirements

19. References

20. Acknowledgement

j 18 Purgose

lenn a2 continuously d1fferentlab1e function (resxdual vectorj

R(x) = (Rl(x) Rz(x), Sy R (x)) of p parameters x = (xl. Xos tees xp)T
NL2SOL attempts to find a parameter vector x* which minimizes the sum-of-
squares function F(x) = %— 2_1 1(x)

2. Method

Reference 1 explains the algorithm realized by NL2SOL in detail. The
algorithm amounts to a variation on Newton's method in which part
of the Hessian matrix is computed exactly and part is approximated by a
secant (quasi-Newton) updating method. Once the iterates come sufficiently
close to a (local) solution, they usually converge quite rapidly. To pro-
mote convevgence from poor starting guesses, NL2SOL uses a model/trust-
region technique along with an adaptive choice of the model Hessian. Ccn-
sequently, the algorithm sometimes reduces to a Gauss-Newton or Levenberg-
Marquardt method. On large-residual problems (in which F(x*) is large),
however, NL2SOL often works much better than these methods.

3. Calling Sequence

CALL NL2SOL(N, P, X, CALCR, CALCJ, IV, V, UIPARM, URPARM, UFPARM)

T e— T — sulnulllllll-ll-llll

Note:

CALCR

-28-

In the double-precision version of NL2SOL, all quantities termed
REAL below are actually DOUBLE PRECISION.

(input INTEGER) is the number of components in the residual vector R.
(input INTEGER) is the number of parameters on which R depends.

(I/0 REAL array of length P) on input is an initial guess at the
desired solution x*, When NL2SOL returns after converging or
reaching the iteration limit (i.e., returms with IV(1l) = 3, 4, 5,
6, or 8), X contains the best parameter estimate found.

(input subroutine) computes the residual vector R = R(X) .when
invoked by:

CALL CALCR(N, P, X, NF, R, UIPARM, URPARM, UFPARM)

When CALCR is called, NF is the invocation count for CALCR; it is
included for possible use with CALCJ. If X is out of bounds (e.g.
if R(X) would overflow), then CALCR should set NF to 0, which will
cause a shorter step to be attempted. CALCR should not change N, P,
or X and should be declared EXTERNAL in the calling program. R

" should be declared REAL R(N) .

CALCJ

(input subroutine) computes the Jacobian matrix J = J(X) of first
o9R

partials, J, = ——1(x), when invoked by:
i3 axj

CALL CALCJ(N, P, X, NF, J, UIPARM, URPARM, UFPARM)

When CALCJ is called, NF is the invocation count for CALCR at the
time when R(X) was evaluated. Except when J is restored after a
covariance matrix has been computed with IV(COVREQ) = 1 or 2 (see
§6), the X passed to CALCJ is the one passed to CALCR on either
its most recent invocation or the one prior to it. Thus if CALCR
saves intermediate results for use by CALCJ, then it is possible

" to tell from NF whether they are valid for the current X (or which

v

copy is valid if two are kept). If J cannot be computed at X, then
CALCJ should set NF to 0. CALCJ should not change N, P, or X and
should be declared EXTERNAL in the calling program. J should be
declared REAL J(N,P) .

(I1/0 INTEGER array of length P + 60) on input contains certain
values (such as limits on the number of iterations and calls on
CALCR) that control the behavior of NL2SOL and on output contains
various counts and other items of interest: see §§5 and 6. If
IV(1) = 0 on input, then default values are supplied for the input
components of both IV and V. The caller may supply nondefault
values for selected components of IV and V by CALLing DFAULT(IV, V)
and then assigning the appropriate nondefault values before calling
NL2SOL.

(I/0 REAL array of length 96 + Ne+(P+3) + P+(7P + 43)/2) on input
contains certain values (such as convergence tolerances) that

~Illlllllilllllllll.i

-29-

control the behavior of NL2SOL and on output contains various items
of interest (such as F(X) and R(X)): sece §§87 and 17.

UIPARM (INTEGER array of length determined by the caller) is passed without
change to CALCR and CALCJ and may be used by them in any way that
the caller may find convenient.

URPARM (REAL array of length determined by the caller), like UIPARM, is
passed without change to CALCR and CALCJ.

UFPARM (subroutine), like UIPARM, is passed without change to CALCR and
CALCJ. If there is no need for such a subroutine, then on many
systems it suffices to pass an arbitrary variable or constant for
UFPARM. But if an actual subroutine is passed, then it must be
declared EXTERNAL in the calling program.

4. Example 2 2
x1 + x2 + xlx2

Let n=3, p=2, and R(x) = |sin x (This problem is

1 .
cos x2

due to Madsen, Reference 3.) The following FORTRAN code minimizes
F(x) = %R(x)TR(x), starting from the initial guess (3, l)T, using a single-
precision version of NL2SOL.

INTEGER IV(62)

REAL V(168), X(2)

EXTERNAL MADR, MADJ

X(1) = 3.0

X(2) = 1.0

() =0

CALL NL2SOL(3, 2, X, MADR, MADJ, 1V, V, O, O., MADR)
STOP

END

SUBROUTINE MADR(N, P, X, NF, R, UIPARM, URPARM, UFPARM)
INTEGER N, P, NF, UIPARM(1)

REAL X(P), R(N), URPARM(1)

EXTERNAL UFPARM

R(1) = X(1)**2 + X(2)**2 + X(1)*X(2)

R(2) = SIN(X(1))

R(3) = COS(X(2))

RETURN

END

SUBROUTINE MADJ(N, P, X, NF, J, UIPARM, URPARM, UFPARM)
INTEGER N, P, NF, UIPARM(1)

REAL X(P), J(N,P), URPARM(1)

EXTERNAL UFPARM

J(1,1) = 2.0%X(1) + X(2)

J(1,2) = 2.0%X(2) + X(1)

J(2,1) = COS(X(1))

2 s S RS SOl L S TN AT SR

-30-

J(2,2) = 0.0
J(3,1) = 0.0
J(3,2) = -SIN(X(2))
RETURN

END

The main program above passes MADR as CALCR and MADJ as CALCJ. Since
no use is made of UIPARM, URPARM, or UFPARM, zeroes are passed for UIPARM
and URPARM and MADR is passed for UFPARM.

When the above is executed, NL2SOL prints the initial X vector, a
summary of the iterations performed, the final X vector, and some statistics
(including the final F(X) and a covariance matrix). If REAL is changed to
DOUBLE PRECISION and the above is run on an IBM 370 computer, then NL2SOL
Teports variability convergence (IV(l) = 6 —- see §5) after 7 calls on
CALCR and CALCJ and returns X(1) = -0.156234, X(2) = 0.698698, and
F(X) = 0.386616 .

In this example, it is possible to obtain a slightly smaller value
of F(X) by decreasing the variability convergence tolerance from its default

value of 10-4. If the statement IV(1l) = O in the main program is replaced by

CALL DFAULT(IV, V)
V(42) = 0.0

then variability convergence testing is turned off. When this modified
version of the example is run on an IBM 370 with REAL changed to DOUBLE
PRECISION, NL2SOL reports cosine convergence (IV(1) = 4) after 11 calls
on CALCR and CALCJ and returns X(1) = -0.155437, X(2) = 0.694564, and
F(X) = 0.386600 .

S. Return Codes

When NL2SOL returns, IV(1l) contains one of the following return codes:

3 = X convergence: see V(XCONCR) in §7.

.4 = cosine convergence: see V(CCONCR) in §7.

5 = residual convergence: see V(RCONCR) in §7.

6 = variability convergence: see V(VCONCR) in §7.

7 = function evaluation limit reached: see IV(MXFCAL) in §6.
8 = iteration limit reached: see IV(MXITER) in §6.

9 = STOPX returned .TRUE. (extermal interupt): see §16.

11 = F(X) overflows at the initial X.

12 = bad parameters passed to ASSESS (which should not occur).
13 = J(X) could not be computed (i.e., CALCJ set NF to 0).

14 = one of the inequalities NN 2 N 3> P 2 1 {is violated. (NN is

only of interest to those who exercise the reverse communication
option — see §15.)

15 = NL2SOL was restarted (see §9) with NN, N, or P changed.

16 = IV(INITS) is out of range: see §6.

17 = IV(1) was out of range (i.e., was negative or greater than 10)
when NL2SOL was called.

18 or more = V(IV(1l)) is out of range: see §§7 and 17.

Just before NL2SOL returns, a brief description of the return code

&
o e i e |
s . .

-3]-

is printed (unless all printing is turned off by IV(PRUNIT) = 0).
6. 1V Values

IV Input Values (Supplied by DFAULT)

IV(l)eeeeeeee IV(1) should have a value between 0 and 10 when NL2SOL is
called. 0 and 10 both mean that this is a fresh start; 0
means DFAULT(IV, V) should be invoked to supply default values
to the input components of IV and V, while 10 means that the
caller has already supplied these values. IV(1l) input values
between 3 and 9 mean that NL2SOL should restart: see §9.
Default = 10,

IV(COVPRT)... IV(14) = 1 means print a covariance matrix at the solution.
This matrix is computed as IV(COVREQ) dictates just before a
return with IV(1) = 3, 4, 5, or 6. IV(COVPRT) = 0 means do not
print a covariance matrix. Default = 1.

IV(COVREQ)... IV(15) # O means compute a covariance matrix just before a
return with IV(1) = 3, 4, 5, or 6. In this case, an approxi-
mate covariance matrix is obtained in one of several ways.

Let k = |IV(COVREQ)| and let o = 2F(X)/max{1,N-P}, where
2F(X) is the residual sum of squares. If k =1 or 2, then

a finite-difference Hessian approximation H is obtained. 1If

H is positive-definite (or, for k = 3, if the Jacobian matrix

J = J(X) is nonsingular), then one of the following is computed:

k=1=> g8 LaTnu?
k=2 =>qgeH L
g3 ues ge T,

If IV(COVREQ) > 0, then both function and gradient values (calls {
on CALCR and CALCJ) are used in computing H (with step sizes
determined by V(DELTAQ) -- see §7), while if IV(COVREQ) < O,
then only function values (calls on CALCR) are used (with step
sizes determined by V(DLTFDC)). If IV(COVREQ) = 0, then no
attempt is made to compute a covariance matrix (unless |
IV(COVPRT) = 1, in which case NL2SOL assumes IV(COVREQ) = 1
and NL2SNO assumes IV(COVREQ) = -1). Default = 1.

IV(INITS).... IV(16) tells how the S matrix of Ref. 1 should be initialized:
0 means set S to O and start with the Gauss-Newton model; 1 and
2 mean that the caller has supplied the initial S, storing its
lower triangle row-wise in V starting at V(P + 87); IV(INITS) = 1
means start with the Gauss-Newton model, while IV(INITS) = 2
means start with the augmented model. Default = 0.

IV(MXFCAL)... IV(17) gives the maximum number of function evaluations (calls
on CALCR, excluding those used to compute the covariance matrix)
allowed. If this number does not suffice, then NL2SOL returns
with IV(1l) = 7. Default = 200.

IV(MXITER)... IV(18) gives the maximum number of iterations allowed. It also
indirectly limits the number of gradient evaluations (calls on

-32=-

CALCJ, excluding those used to compute the covariance matrix)
to IVOMXITER) + 1. If IV(MXITER) iterations do not suffice,
then NL2SOL returns with IV(1l) = 8. Default = 150.

IV(OUTLEV)... IV(19) controls the number and length of iteration summary
lines printed. IV(OUTLEV) = 0 means do not print any summary
lines. Otherwise, print a summary line after each IIV(OUTLEV)!
iterations. Long summary lines are printed if IV(OUTLEV) > O,
short lines if IV(OUTLEV) < 0. See §13 for more details.
Default = 1.

IV(PARPRT)... IV(20) = 1 means print any nondefault V values on a fresh
! start or any changed V (input) values on a restart.
IV(PARPRT) = 0O means skip this printing. Default = 1.

IV(PRUNIT)... IV(21) is the output unit number on which all printing is
done. IV(PRUNIT) = O means suppress all printing. (Setting
IV(PRUNIT) to 0 is the only way to suppress the one-line
termination message printed before NL2SOL returus.)
Default = standard output unit (unit 6 on most systems); the
default for IV(PRUNIT) is actually IMDCON(1l): see §l4.

IV(SOLPRT)... IV(22) = 1 means print the X returned (along with the
corresponding gradient and scale vector D). IV(SOLPRT) = 0
means skip this printing. Default = 1.

IV(STATPR)... 1V(23) = 1 means print summary statistics upon returning.
These consist of the function value (half the residual sum of
squares) at X, the variability of the last step (see V(VCONCR)
in §7), the number of function and gradient evaluaticns (calls
on CALCR and CALCJ respectively, excluding any calls used in
computing the covariance), the 2-norm of the gradient at X,
the corresponding V(COSMAX) (see V(CCONCR)), and the number of
calls (if positive) on CALCR and CALCJ used in trying to compute
covariance matrices. IV(STATPR) = 0 means skip this printing.
Default = 1.

IV(XOPRT).... IV(24) = 1 means print the initial X and scale vector D if
this is a fresh start. IV(XOPRT) = O means skip this printing.
Default = 1.

IV Output Values of Primary Interest

IV(1)eeeeeees IV(1) is the return code: see §5.

IV(COVMAT)... IV(26) tells whether a covariance matrix was computed. If
IV(COVMAT) is positive, then the lower triangle of the covari-
ance matrix is stored row-wise in V starting at V(IV(COVMAT)).
If IV(COMAT) = 0, then no attempt was made to compute a co-
variance matrix. If IV(COVMAT) = -1, then the finite-difference
Hessian H was indefinite (or, for |IV(COVREQ)| = 3, the current
Jacobian matrix is singular; see IV(COVREQ) above). And if
IV(COVMAT) = -2, then a successful finite-difference step could
not be found for some component of X (i.e., CALCR set NF to 0
for each of two trial steps). Note that IV(COVMAT) is reset to
0 after each successful iteration, so that if a lower function

-33-

value is found after a restart, then a new attempt will be
made to conpute a covariance matrix.

IV(D)eeeeeeo. IV(27) is the starting subscript in V of the current scale
vector D (see V(DO) in §7).

IV(G)eeeeeees IV(28) is the starting subscript in V of the current gradient
vector g = J(X)TR(X).

IV(NFCALL)... IV(6) is the number of calls so far made on CALCR (i.e.,
the number of function evaluations, including those usaed in
computing covariance matrices).

IV(NFCOV).... IV(40) is the number of calls made on CALCR when computlng
covariance matrices.,

IV(NGCALL)... IV(43) is the number of calls so far made on CALCJ (i.e.,
the number of gradient evaluations, including those used in
computing covariance matrices).

IV(NGCOV).... IV(41l) is the number of calls made on CALCJ when computing
covariance matrices.

IV(NITER).... IV(44) is the number of iterations performed.

IV(R)eeeeeeo. IV(50) is the starting subscript in V of the residual
vector R(X).

7. V Values of Primary Interest

Many of the V input components described here and in §17 must lie
within a certain range of values. If such a component falls outside the
range indicated below (and in §17) at the beginning of its description,
then module PARCHK will print an error message (unless IV(PRUNIT) = 0)
and will force NL2SOL to return immediately with IV(1l) > 18.

Frequent reference is made below to two quantities: MACHEP and the
scale vector D. MACHEP is the unit roundoff for the floating point arith-
metic being used -- see §14. The scale vector D is the diagonal of the
(diagonal) scale matrix D, discussed in 8§85 and 7 of [1]; this scale
matrix is denoted by diag(D) below.

V _Input Values of Primary Interest (Supplied by DFAULT)

V(CCONCR)... V(29) € [0, 1] is the cosine convergence tolerance. Let Ji
denote the ish column of the nXp Jacobian matrix J and let
18T, |
cosmax(R,J) = max{ Hiﬂjﬂj*ﬂ' [" > JTOL(1i), 1 € i € p},

where JTOL is described with V(JTIVIT) below. If NL2SOL finds
an X giving cosmax(R(X),J(X)) £ V(CCONCR), then it returns

with IV(1) = 4. Default = max{10'7. 1000*MACHEP}.
V(DELTAG). . V(31) € [MACHEP, 1] hclps pick the finite-difference steps

— T = ' | I

-34-

used in computing H when IV(COVREQ) = 1 or 2. The step used
for component X(i) is

V(DELTAQ) « max{|X(i)|, 1/D(1)} « sign(X(i)),
where D is the current scale vector, (If this step results
in CALCR setting NF to 0, then -0.5 times this step is also

tried.) Default = MACHEP(IIZ).

V(DFAC)..... V(32) € [0, 1] and V(DO) are used in updating the scale vector
D —- see V(DO) below. Default = 0.6.

V(DINIT).... V(33), if nonnegative, is the value to which all components
of the scale vector D are initialized. Default = 0.

V(DLTFDC) ... V(34) € IMACHEP, 1] helps pick the step sizes used in com-
puting H when IV(COVREQ) = -1 or -2. For differences involv-
ing X(i), the step first tried is

V(DLTFDC) * max{|X(i)|, 1/D(i)}.
(If this step is too large, i.e., if CALCR sets NF to 0 when
this step is first tried, then -0.5 times this step is also

tried.) Default = MackEp(/3),

V(DLTFDJ)... V(35) € [MACHEP, 1] helps pick the step sizes that NL2SNO
uses when computing its finite-difference approximation to
the Jacobian matrix (see §8). For differences involving X(i),
the step first tried is V(DLTFDJ) + max{|X(i)|, 1/D(i)}.
(If this step is too large, i.e., if CALCR sets NF to O,
then smaller steps are tried until the step size is shrunk

below 1000+MACHEP.) Default = Machep‘l/2),

V(D0)....... V(36) and V(DFAC) are used in updating the scale vector D.
If V(DO) > 0, then at the start of each iteration, D(i) is
set to 1/2 :

max{[uJi": + max{s,/,0}]""“, V(DFAC)*D(1), JTOL(1), V(DO)},
where Ji is the i— column of the current Jacobian matrix,
S is the S matrix of [1], and JTOL is the array described with
V(JTINIT) below. If -1 < V(DO) < O, then D is set to the above
values (after any initialization due to V(DINIT)) on the first
iteration and is not changed again. If V(DO) = 0, then all
components of D are set to 1 (regardless of V(DINIT)), which .
usually gives good performance on well-scaled problems. If
V(D0) < -1, then it is assumed that the caller has chosen D and
has stored it in V, starting at V(96 + 2N + P[7P + 41}/2).
Default = 10-3.

V(JITINIT)... V(38) 2 0. For 1< i <P, JTOL(i) is a tolerance used to
decide whether the i-th column of the Jacobian matrix should
be considered to be zero. If V(JTINIT) > O, then all components
of the JTOL array are set to V(JTINIT), and if V(JTINIT) = O,
then it is assumed that the caller has stored JTOL in V start-
ing at V(87). Default = 10 °,

V(LMAXO).... V(39) > 0 gives the maximum 2-norm allowed for the very first

L

i st e ———

F—

e

-35~

step that NL2SOL attempts. On problems where this step would
otherwise be inordinately large, it is very useful to assign
a modest value to V(LMAX0). Default = 100.

V(RCONCR)... V(40) > 0 is the residual convergence tolerance. If
f "R(X)” V(RCO\CA), then NL2SOL returns with IV(1) = 5.
9 3

Default =

V(VCONCR) ... V(42) 2 0 is the variability convergence tolerance. If i
is the current Hessian approximation, then the variability
of the current step Ax is

V(VARIAB) = max{1,N-P} - AxTHAX / (2F(X)),
where 2F(X) is the current residual sum of squares. If
V(VARIAB) < V(VCONCR), then NL2SOL returns with IV(1l) =

Dafandt = 16

V(XCONCR)... V(28) > 0 is the X convergence tolerance. If a step Ax is
tried that yields a much smaller function decrease than
expected, and if V(RELDX) < V(XCONCR), where V(RELDX) is
the maximum relative change in any component of X [which,
for X = X + Ax, 1s computed as

Ix(1) - x (D]

max{lx(i)l ¥]x cE] I

‘then NL2SOL returns with IV(1) = 3. Default = 1000°MACHEP.

V(RELDX) = 1<1igPH,

V Output Values of Primary Interest

V(COSMAX)... V(43) = cosmax(R(X), J(X)) -- see V(CCONCR) above.
V(DGNORM) ... V(1) = Hdlag(D)J(x) R(x)” where D is the current scale
vector and J(X) R(K) = VF(X)

V(DSTNRM)... V(2) = "dxag(D)Ax“ where Ax 1is the most recently tried
r step.

V(F)eoonnins V(10) = FCO) = REOIZ/ 2.

V(RELDX).... V(17) is the maximum relative change in X caused by the most
recent step -- see V(XCONCR) above.

V(VARIAB)... V(50) is the variability of the most recent step -- see
V(VCONCR) above.

8. Finite-Difference Jacobians -- NL2SNO

Those who do not wish to code a subroutine CALCJ for (analytically)
computing the Jacobian matrix may avoid doing so by calling NL2SNO instead
of NL2SOL. NL2SNO computes an approximate Jacobian matrix by forward
differences (using a step size determined by V(DLTFDJ) -- see §7). The
calling sequence for NL2SNO amounts to the one for NL2SOL with CALCJ omitted:

CALL NL2SNO(N, P, X, CALCR, 1V, V, UIPARM, URPARM, UFPARM)

’ — .

v
-

S_.- ————

B

-m
-

The parameters for NL2SNO are the same as the corresponding ones
for NL2SOl.. One minor exception occurs with the handling of IV(COVREQ):
if IV(COVPRT) = 1 and IV(COVREQ) = 0, then NL2SNO sets IV(COVREQ) = -1;
otherwise NL2SNO sets IV(COVREQ) to -lIV(COVREQ)l. Thus NL2SNO uses
function values only in computing covariance matrices and V(DELTAQ) is
not used.

9. Restarting

After any return with 3 < IV(1l) £ 9, it is possible to change some
of the IV and V input components (such as the convergence tolerances and
the iteration and function evaluation limits) and call NL2SOL (or NL2SNO)
again with IV(1l) unchanged. This causes the algorithm to be resumed at
the point where it was interrupted. (It is even possible to save 1V, V,
and X and then restart in a subsequent run.)

10. Scaling

Problems sometimes arise which are poorly scaled in the sense that
the various components of X are expressed in widely differing units. With
the default choice of the scale matrix D (see V(DO) and the beginning of
§7), the behavior of NL2SOL is largely insensitive to this kind of poor
scaling. On well scaled problems, its performance can often be improved
by choosing D to be the identity matrix (i.e., setting V(DQ) = 0). Some-
times it may. also be worthwhile to fix D(i), 1 < i < P, at the 2-norm
of the i-th column of the initial Jacobian matrix (by setting V(LJ) = -0.5).

11. IMAX0: Limiting the First Step Length

On some problems it is necessary to give V(LMAX0O) = V(39) a:small
value to prevent a disasterously large first step, one which might lead
to exponent overflow or arguments out of range to intrinsic functions.
Even if no disaster occurs, if NL2SOL takes many function evaluations on
the first step, then performance might be improved by a much smaller (or
in some cases larger) value of V(LMAXO).

Note that if Ax is the very first step attempted, then "Axﬂ2 rather

than “diag(D)Aﬂk is bounded above by V(LMAX0), because it was felt that
the caller might have a better idea of how "Ax"zshould be limited. As a
result, V(LMAXQ) is a scale-sensitive quantity.

12. Local Solutions

It can easily happen that NL2SOL only finds a local minimizer of the
sum-of-squares function F(X) and that a different starting guess would
cause a point to be found at which F has a still smaller value. Except
for cases where special conditions (such as convexity of the objective
function) prevail, this shortcoming is shared by all minimization algorithas.

13. Printed Output

Any printing is done by one of two modules: ITSMRY and PARCHK.

- SEER— -—m

=37

PARCHK reports any V input components that are out of range and optionally
lists any such components that have nondefault or changed values (on a
fresh start or restart respectively). ITSMRY does the remaining printing.
Various IV input comporents control what printing is done -- see §6.

If IV(OUTLEV) > 0, then ITSMRY produces an iteration summary which
includes the following values: IT, the current iteration number; NF, the
number of function evalwations (calls on CALCR), excluding any extra ones
needed for computing covariance matrices and, in the case of NL2SNO,
excluding the extra ones needed to compute finite-difference Jacobian
matrices; F, the current function value (half the residual sum of squares);
DF, the difference between the previous and current function values; COSMAX,
the current cosmax(R(X), J(X)) -- see V(CCONCR) in §7; VAR, the current
step variability -- see V(VCONCR) in §7; MODEL, which tells which models
were used in computing the current step [G = the Gauss-Newton model;

S = the augmented model; G-S means the Gauss-Newton model was tried first
and a switch was then made to the augmented model; S-G, G~S-G, and S~G-S
have analogous meanings]; LAMBDA, the current Levenberg-Marquardt param-
eter A (which is nonnegative if the step Ax just taken satisfies

[ﬁ + A'diag(D)z]Ax = -VF(X -Ax), where H is the current Hessian approxi-
mation, and is negative if the special case discussed in [2] was detected);
RELDX, the current value of V(RELDX) -- see V(XCONCR) in §7; G, the current

value of ”VF(X)”2= “J(X)TR(X)”Z; SIZE, the sizing factor just used in

updating the S matrix (see [1]); and D*STEP, the current value of V(DSTNRM)
-~ see §7. These summary lines are 118 characters long (including the
carriage control character). If IV(OUTLEV) < 0, then lines of maximum
length 69 (or 56 if IV(COVPRT) = 0) are generated, and the iteraticn
summary includes only the first six items described above (i.e., IT, NF,F,
DF, COSMAX, and VAR).

14. Changing Computers

The NL2SOL distribution tape contains both single- and double-precision
versions of the NL2SOL source code, so it should be unnecessary to change
precisions. (On computers having only 32 or 36 bits per REAL word, double
precision often gives better performance.)

Only the functions IMDCON and RMDCON contain machine-dependent constants.
To change from one computer to another, it should suffice to change the
DATA statements in these functions. The DATA statement in IMDCON sets
MDCON(1) to the output unit number that DFAULT supplies to IV(PRUNIT).

The machine-dependent DATA statement in RMDCON provides three values: BIG,
ETA, and MACHEP. BIG is the largest floating-point number such that a

FORTRAN program can compute SQRT(0.999*BIG)**2 [i.e., DSQRT(0.999DO*BIG)**2
in DOUBLE PRECISION] without overflowing. Similarly, ETA is the smallest
floating-point number such that SQRT(1.001*ETA)**2 [or DSQRT(1.001DO*ETA)**2
respectively] does not underflow. MACHEP is the unit roundoff, i.e., the
smallest floating-point number such that 1 + MACHEP yields a stored floating
point number greater than 1 and 1 - MACHEP yields a stored number less than

1. (Some corputers feature registers that carry more bits than can be stored;
VACUEP should only reflect the accuracy of numbers that can be stored.)

o .. —————

-38-

The test program supplied on the NL2SOL distribution tape places the
further restriction on BIG and ETA that EXP(1.999*ALOG(SQRT(0.999*BIG)))
and EXP(1.999*ALOG(SQRT (1.001*ETA))) [DEXP(1.999D{O*DLOG (DSQRT (0.999D0*BIG)))
and DEXP(1.999D0*DLOG(DSQRT(1.001DO*ETA))) in DOUBLE PRECISION] not overflow
or underflow. DATA statements giving suitable values for BIG, ETA, and
MACHEP for a variety of computers appear as comments in RMDCON.

Intrinsic functions are explicitly declared in the NL2SOL source code.
On certain computers (e.g. Univac), it may be necessary to comment out
these declarations. So that this may be done automatically by a simple
program, such declarations are preceded by a comment having C/+ in columns
1-3 and blanks in columns 4-72 and are followed by a comment having C/
in columns 1 and 2 and blanks in columns 3-72.

15. Using Reverse Communication -- NL2ITR

Instead of writing subroutines CALCR and CALCJ to compute the residual
vector R(X) and Jacobian matrix J(X), one can call NL2ITR and provide R and
J by reverse communication. The calling sequence is:

CALL NL2ITR(D, IV, J, N, NN, P, R, V, X)

Parameters IV, N, P, V, and X are the same as the corresponding parameters
to NL2SOL, with the following exceptions: V need only contain

‘96 + 2N + P[7P + 41]/2 elements, since the storage that NL2SOL and NL2SNO

allocate for D, J, and R at the end of V is not needed; and components
Iv(D), IV(J), and IV(R) are not referenced. D is the scale vector (dimen-
sioned D(P)). NN is the (integer) lead dimension for the J array, which
is dimensioned J(NN,P); NN must satisfy NN > N.

When NL2ITR is first called (with IV(1l) = 0 or 10), J must have been
set to J(X), R to R(X). When NL2ITR wants R to be evaluated at a new X,
it returns with IV(l) = 1; the caller should then set R to R(X) (unless
X is out of range, in which case the caller should set IV(TOOBIG), i.e.,
IV(2), to 1) and call NL2ITR again. Similarly, when NL2ITR wants J to
be evaluated at X, it returns with IV(1l) = 2, and the caller should then
set J to J(X) and call NL2ITR again. (If J cannot be evaluated at X, the
caller may set IV(NFGCAL), i.e., IV(7), to 0; this will cause NL2ITR to
give the error return IV(1l) = 13.)

16. STOPX

It 1s possible to arrange for NL2SOL (NL2SNO and NL2ITR) to be inter-
rupted when used in an interactive environment. To do this, it is necessary
to replace the logical function STOPX supplied with the NL2SOL package
(which always returns .FALSE.) by a system-dependent STOPX that returns
+TRUE. if and only if the "break" (i.e., "interrupt") key has been pressed
Since the last call on STOPX. Once this is done, NL2SOL will return with
IV(1) = 9 when the "break" key is pressed before some other return has
occurred. It is then possible to change some of the IV and V input com-
ponents and restart -- see §9,

17. Other V Input Values

|
|
|

1

-39~

V(COSMIN)... V(30) € [MACHEP, 1) is the minimum absolute cosine allowed
between the step just taken, Ax, and the corresponding change
in gradients, Ag, for a full update of the S matrix to be

performed. If |ax Ag|/(|| '"AgL) < V(COSHIN), then fx’Ag
is replaced in the update formula by

sign (Ax"Ag) *V(COSMIN) +|| Ax]]
Default = max{10 °, 1oo-w\2cmp}.

V(DECFAC)... V(21) € [0.01, 0.8) is the factor by which the radius of the
trust region is shrunk if CALCR sets NF to 0 (or NL2ITR is
called with IV(l) = 1 and IV(TOOBIG) = 1l). Default = 0.5.

V(EPSLON)... V(18) € [0.001, 0.9) is the maximum relative difference al-
lowed between VF(X)TAx + leTﬁAx and its optimal value
(subject to the constraint ”dzag(D)Ax" V(RADIUS)), where

Ax is the step being computed and H ls the current Hessian
approximation., This is used in detecting and handling the
special case discussed in [2). Default = 0.1.

V(FU22) eee.. V(37) € [1.01, 100] is used in the test that decides whether
to switch models. If gq is the current model for F (near

~
the point X) and g is the other model, and if

N
V(FUZ2) *|q(X + A&x) - F(X + Ax)| < |q(x + Ax) - F(x + Ax) |,
then the models are switched. Default = 1,41421.

V(INCFAC)... V(22) € [1.2, 100] is the factor by which the radius of the
trust region is increased if module ASSESS deems this worth-
while (or the gradient tests performed in NL2ITR indicate
that this should be done). Default = 2,0.

V(PHMNFC)... V(19) € [-0.99, -0.001] is the minimum value allowed for
tlaiag (D) Axl] - V(RADIUS)] /V(RADIUS) . Default = -0.1.

V(PHMXFC)... V(20) £ 1. 2 100] is the maximum value allowed for
[||d:.ag(D)Ax||z-V(RADIUS)]/V(RADIUS). Default = 0.1.

V(RDFCMN) ... V(23) € [0.01, 0.8] is the minimum factor by which the trust
region radius V(RADIUS) may be shrunk. Default = 0.1l.

V(RLIMIT)... V(41) e [10'°, BIG] is the largest value allowed for ”R(x)m

before F(X) is considered to overflow. Default = y0.999°BIG,
where BIG is described in §14.

V(TUNERL)... V(24) € (0, 0.5]. If the actual function reduction is no
more than V(TUNER1) times its predicted value, then module
ASSESS will consider switching models or decreasing the trust
region radius. Default = 0.1l.

V(TUNER2) ... V(25) 3 1. If the actual function reduction is at least
V(TUNER2) times its predicted value, then ASSZESS decides to
increase the trust region radius. Default = 10.

AN T 5 A At T O S 0 55 i —

N

V(TUNER3)... V(26) € [0.001, 1]. If F(x+Ax) - F(X) § V(TUNER3)+Ax VF(X),
then ASSESS decides to increase the trust region radius.
Default = 0.75.

V(TUNER4)... V(27) €.(0, 1). If ASSESS accepts the step Ax without other-
wise deciding to increase or decrease the trust region radius,
and if either i
[VE(x+ Ax) ~ VF(X) - HAxﬂz < V(TUNERA4) *|| VF (X + Ax)ll2

or AXTVF(X+ Ax) < V(TUNER3) *Ax VF(X), then the radius is
increased. Default = 0.S.

18, Storage Requirements

The NL2SOL package (excluding test program) amounts to about 5000
lines of FORTRAN source code, which includes about 1900 executable state-
ments and around 40 FORMAT statements. When compiled on an IBM 370 by
the H-extended compiler with OPT(2), this source code results in a little
under 54000 bvtes of object code. The amount of variable storage used is
listed above in §3.

19. References

{1] Dennis, J.E.; Gay, D.M.; and Welsch, R.E. (1979), "An Adaptive
Nonlinear Least-Squares Algorithm",

[2] Gay, D.M. (1979), "Computing Optimal Locally Constrained Steps",

[3] Madsen, K. (1973), "An Algorithm for Minimax Solution of Over-
determined Systems of Nonlinear Equations", Report TP 559,
A.E.R.E. Harwell, Oxon., England.

20. Acknowledgement

‘ Research leading to the NL2SOL package was supported in part by
1 National Science Foundation Grants DCR75-10143, MCS76-00324, and SOC76-
14311 to the National Bureau of Economic Research, Inc., and was spon-
ored in part by NSF Grant MCS78-09525 and United States Army Contract
DAAG29-75-C-0024 to the Mathematics Research Center at the University
of Wisconsin,

SECURITY CLASSIFICATION OF THIS PAGE (When Data Fntered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 7 GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
2010
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific

reporting period
6. PERFORMING ORG. REPORT NUMBER

AN ADAPTIVE NONLINEAR LEAST-SQUARES ALGORITHM

. 8. CONTRACT OR GRANT NUMBER(s)
b MCS76-00324, SOC76-14311
John E. Dennis, Jr., David M. Gay, Roy E. Welsch 75 910-}g3c 0024
MCS 8 09525
9. PERFORM!N.G ORGANIZATION NAME AND ADDRES.S : 10. ::giR.A:OEA.KE:SrTTNZ%OBJEECT TASK
Mathematics Research Center, University of
610 Walnut Street Wisconsin | 3 - Numerical Analysis and °
Madison, Wisconsin 53706 Computer Sciénce
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
October 1979
See Item 18 below 13. NUMBER OF PAGES
40
14. MONITORING AGENCY NAME & ADDRESS(if diflerent from Controlling Oftice) 1S. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTR BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation National Bureau of
P.0O. Box 12211 Washington, D.C. 20550 Economic Research
Research Triangle Park, Washington, D.C.
North Carolina 27709 20230

19. KEY wORDS (Continue on reverse side il necessary and Identify by block number)

Unconstrained optimization, nonlinear least squares, nonlinear regression,
quasi-Newton methods, secant methods.

20, ABSTRACT (Cont/nue on reverse side If necessary and identify by dlock numbder)

NL2SOL is a modular program for solving nonlinear least-squares problems that
incorporates a number of novel features. It maintains a secant approximation S
to the second-order part of the least-squares Hessian and adaptively decides
when to use this approximation. S is "sized" before updating, something which
is similar to Oren-Luenberger scaling. The step choice algorithm is based on
minimizing a local quadratic model of the sum of squares function constrained to
an elliptical trust region centered at the current approximate minimizer. This

is accomplished using ideas discussed by Moré, together with a special module for

DD ,5.u%; 1473 £0imion OF 1 8OV 65 15 OBSOLETE UNCLASSIFIED

continued

SECHRITY C1 ASSIFICATION OF THIS PAGE (“When Deata Entered)

abstract (continued)

assessing the quality of the step thus computed. These and other ideas behind
NL2SOL are discussed and its evolution and current implementation are also
described briefly.

